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Abstract 

A geometrical model for estimating the effects of external fields upon a reaction 
path is proposed. The reaction path is defined as the intrinsic reaction coordinate (IRC) 
which is treated as a "string". The IRC frame is introduced in order to uniquely determine 
the attitude of the string with respect to the reaction medium. The string is thrown in 
the external fields of the reaction medium, and slides or rotates, and is deformed. The 
cell structure attached to the string is also deformed. A perturbational approach to the 
reaction rate formula is presented. 

1. Introduct ion 

External fields to chemical reaction systems have influence on the dynamics 
of the chemical reaction. We shall introduce a new concept of the "string model" 
in order to treat this kind of problem. Preliminary numerical results have been 
published elsewhere [1,2]. Much of the basic idea has been formulated in terms of 
differential geometry [3]. 

If we are treating the dynamics of the isolated molecular system, then we 
have the complete molecular Hamiltonian in terms of differential geometry, thereby 
introducing the concept of "molecular gauge potential" for the treatment of the 
vibration-rotation coupling [4(a)]. The fibre bundle theory of differential geometry 
has clarified complexities in the traditional approaches of nonrigid molecular 
dynamics [5] and Wilson's G matrix theory for semirigid molecular dynamics [6]. 

In the isolated reaction system, the Eckart frame for the treatment of the rigid 
to semirigid molecular vibrational problems is immaterial because it is not uniquely 
determined [4]. However, in the string model, in what follows in this paper, a 
moving frame attached to the string has significant meaning because we should 
determine the "attitude" of the reaction system with respect to the reaction medium. 
For this purpose, the concept of the "IRC" (intrinsic reaction coordinate) introduced 
by Fukui [7] is very helpful because along the IRC, the moving frame is defined 
uniquely. This is because the IRC satisfies a first-order differential equation, called 
the IRC equation [8]. The IRC passes through the TS (transition state) connecting 
R (reactant) and P (product) configuration using the boundary condition at the TS. 
The IRC equation utilizes the gradient vector of the Born-Oppenheimer adiabatic 
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potential energy of the reaction system. For isolated systems equipped with only 
internal forces, the IRC equation is nothing but the steepest-descent path in the 
mass-weighted coordinate system. The IRC then satisfies the coordinate-free 
characterization of the translation-free and rotation-free reaction path. We may call 
the moving frame associated with the IRC the IRC-driven moving frame, or the IRC 
frame for short. The IRC frame determines uniquely the attitude of the string with 
respect to the reaction medium. 

From its definition, the IRC carries the potential energy characterization of 
the configurations of the reactant, the transition state, and the product: the "cell" 
structure partitioning of the configuration space of the reaction system [9]. We also 
note the catchment region concept for the characterization of the Born-Oppenheimer  
adiabatic potential energy surface [10]. The cell structure allows the picture of the 
local vibrational mode orthogonal to the IRC, defined by using the extended Hessian 
matrix [11] along the IRC. The concept of the local vibrational mode further allows 
the picture of the local characteristics of the reaction dynamics. 

In the string model, the local vibrational motions attached to the IRC are all 
determined uniquely in the reaction medium using the IRC frame as the unique 
moving frame. Variational principles of the IRC have also been studied in this 
connection [3, 12]. 

2. Str ing model 

We would like to apply our theoretical model to estimate the effects of the 
external fields upon a given reaction path [3]. First, consider a chemical reaction 
system A. Calculate a reaction path and the reaction rate. Second, let the system be 
embedded in a reaction medium M. The schematic view is shown in fig. 1. 

M 

Reaction System A and Reaction Medium M 

Fig. 1. Interaction of a chemical reaction 
system A and the reaction medium M. 

The interaction between A and M affects the original reaction path and the 
original reaction rate. For example, let A be a gas phase reaction system. Then, M 
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is a solvent, water, for example, or a surface of a catalyst. Our approach here is that, 
for any complex situation, we first consider an isolated system A and, second, consider 
a reaction medium M, and then introduce the interaction. If the interaction is mainly 
due to small intermolecular forces, then we may appeal to perturbation theory. In 
general, however, if the interaction is very large then, for example, the exchange 
of heat and vibrational energies and moreover of electrons should also be taken into 
account. Furthermore, the solvent molecule may intervene in the reaction system. 
For example, consider a proton transfer system for A. If the solvent can form a 
hydrogen bond to the system and make a hydrogen relay system, then we observe 
a strong deformation of the original reaction path, namely, a bifurcation of the 
original reaction path may be brought about. For all these situations, we shall stick 
to the simple model "A and M associated with the mutual interaction" [3]. 

In order to proceed in a well-defined manner, we may first want to systematically 
settle the system A distinguished from M. For this purpose, it may be convenient 
to treat the system A as a huge molecule as a whole, a supermolecule. The translational 
motion and the rotational motion of the system A can then be treated as those of 
this supermolecule. The vibrational motions are now to be separated from these 
collective translational and rotational motions. The reaction path for A is then identified 
with one of the large-amplitude vibrational motions. For this purpose, the IRC 
(intrinsic reaction coordinate) proposed by Fukui [7] is suitable because along the 
IRC, the translation and rotation as a whole does not occur. We shall then formulate 
the properties of the IRC as follows. 

The IRC is defined by a differential equation: the IRC equation using the 
potential energy U A of the reaction system A - the adiabatic potential based on the 
Born-Oppenheimer approximation. We represent the nuclear configuration of a 
chemical reaction system composed of N nuclei by a point in 3N-dimensional space- 
fixed Cartesian configuration space with coordinates X a, Ya, and Z a (a  = 1, 2 . . . . .  N). 
The potential energy U a is a function of these coordinates. 

The Lagrange equations of motion for the nuclei are given as 

(d/dt)[MaXa ] = - O U A / ~ X a ,  

(d/dt)[Ma I/a] = -OUA /OYa , 

(d /d t )[Ma2a]  = -~UA /~Za ; a =  1,2 . . . . .  N, (1) 

where t and M a denote the time and the mass of the ath nucleus, respectively. Consider 
an infinitesimal velocity at every instance, which gives 

M a X a  = - ( a U A / a X a ) A t ,  

MaYa  = --(0UA/OYa)At, 

MaZa = -(OUA /OZa)At; a = 1,2 . . . . .  N ,  (2) 
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for an infinitesimal time interval At. Here, the concept of the "intrinsic motion" is 
introduced. In this way, we finally obtain the simultaneous equations, the IRC 
equation: 

MadXa/(~UA /~Xa)  = MadYa/(~Ua /3Ya) 

= MadZ a/ (~U A/3Za)  = const; a =  1,2 . . . . .  N. (3) 

The IRC is the particular solution of the IRC equation using the boundary condition 
at the TS in such a way that the displacement vector for nuclei to move from the 
TS should be that of the unstable vibrational mode uniquely defined at the TS. The 
meta-IRC is a general solution of the IRC equation which is suitable for excited 
state chemical reactions [8]. Because we consider only internal forces for the 
potential U A, the intrinsic motions satisfy the Eckart conditions [1]: 

N N N 

Z ModXo = Z M d)'o = Z ModZ  = 0 
a=l a=l a=l 

(zero total linear momentum), (4) 

N N 

~.~ M a ( X a d V a -  YadXa)=  ~.~ M a ( Y a d Z a -  ZadYa) 
a = l  a = l  

N 

Ma(ZadX c~ - X adZa) = 0 
~ = 1  

(zero total angular momentum). (5) 

If a reaction medium M is applied to the reaction system A, such as a solvent 
or a catalyst, then the perturbation potential is introduced. The perturbation potential 
depends on the configuration of the system A for any configuration of the medium 
M. The interaction forces should obviously include nonlinear contributions. 

We shall then appeal to the method of differential geometry in order to treat 
the system A embedded in the reaction medium M [4]. Since the translational motion 
of the system A can be separated out [4], we have the center-of-mass system X a for 
molecular configuration in the system A as 

(6) 

where X o is a set of all n-ples x = ( x  1 . . . . .  xN), with x a ~  /R 3 a n d x  a~:xtJi f  
a ¢ ft. In this space X A, we let the group G = SO(3) of rotations act: 
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g x =  (gx 1 . . . . .  gXN); g ~  G, x ~  X A, (7) 

Then, an individual molecular configuration corresponds to a point in thequot ient  
space 

M a = XA/G.  (8) 

In differential geometry, X A is treated as a principal fiber bundle over the base 
manifold M A with structure group G = S 0 ( 3 ) ,  and the Lie algebra of  SO(3) is naturally 
identified with/R 3. This abstract manifold M A is referred to as the internal space of  
the system A. In M A, the translation and rotation motions as a whole can be eliminated 
in the sense of  differential geometry, and we can introduce a (3N - 6)-dimensional 
local coordinate system in M A [4]. It should be noted that, in the center-of-mass 
system X A, the rotational motion cannot be eliminated. This means that the Eckart 
frame for the reaction system A is not uniquely determined [4]. A small fluctuation 
in the vibrational motion may bring about the rotation of  the whole system. This 
may be called the reaction holonomy. This situation is illustrated in fig. 2. Then, 
we shall introduce a moving frame, called the IRC frame, for the string in such a 
way that the moving frame is attached to the IRC excluding any such kinds of  
fluctuations. 

xA 

' I I 

I I I I 
| I ! F I 
i i I i I / 

"~ | ..,,'~l | ! i 

~ i l  i I I i I I ~ | I 

I ! I I I , , M 

Reaction holonomy 

Fig, 2. Reaction holonomy demonstrates that the Eckart 
frame of the reaction system A is not uniquely determined. 

In the internal space M A, the cell structure [9] of  the chemical reaction system 
A plays an important role. The well-defined concept of  the cell structure of  the 
reaction system A may be illustrated as in fig. 3. As shown in fig. 3, meta-IRCs 
in a cell converge to a stable equilibrium point, the center of  the cell. As a special 
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Energy S u r f a c e ~ ~  "~ meta-IRC 

% 

Stable Equil ibr ium Point 

Cell Structure 
Fig. 3. Cell s tructure associated with the IRC. 

% 
% 

meta-IRC, only the IRC can go out of the cell through the saddle point. A schematic 
view of the cell structure and the potential energy surface associated with the cell 
structure are shown in fig, 4. This is a model of the isomerization reaction. In the 
figure, the local structure of the potential energy surface is described by the harmonic 
oscillators. 

Now we are ready to introduce the concept of the string. The IRC and the 
associated local harmonic oscillators are combined to define a "string" in the internal 
space M A. This is illustrated in fig. 5. In the following process, in which we embed 
the string in X a, we must fix the moving frame attached to the string. According 
to the IRC frame, we suppose that we fix the frame for the configuration for TS, 
the center of the string, and then we can embed the string in X A. For the isomerization 
reaction, the string is closed. For the fragmentation reaction, the string should be 
open. Successive reactions may be described by fusion of strings. In this sense, the 
string shown in fig. 5 is an elementary one. These geometrical characteristics of the 
reaction mechanisms have been described by pattern recognition of chemical reactions 
and the basic operations allowed for the fundamental patterns [8]. It should be noted 
here that the concepts,of string and the fusion of strings are different but also show 
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Fig. 4. Local vibrational motions attached to the 
IRC are represented by 3N - 7 harmonic oscillators. 
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Fig. 5. String model of the IRC. 
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similarities to the homotopy classes and the product of such classes in the fundamental 
group of reaction mechanisms [10]. 

The next step is the embedding problem of the string of A in X a +u; namely, 
we consider the perturbation by the medion M. The perturbed potential U may then 
be represented as [3]: 

U =  UA + + UM. (9) 

The interaction between A and M affects the original reaction path and the original 
reaction rate. The string may slide and rotate, and may be deformed as shown in 
fig. 6. The interaction potentials U u and Uau may be time dependent or temperature 
dependent in general. 

S t r i n g  F 

D e f o r n  

........... ............. / 

Fig. 6. A string thrown into the external fields 
slides and rotates, and moreover is deformed. 

The deformation of the string may be calculated by perturbation theory. First, 
the interaction energy itself changes the potential energy of the string at each point 
along the IRC. Second, the force exerted on the string shifts the equilibrium point 
of the string, as shown in fig. 7. The shift is calculated at each point on the IRC. 
In fig. 7, the IRC deformation is shown in terms of the shift of the equilibrium point 
of the harmonic oscillator orthogonal to the IRC. Q denotes the loc 'l normal coordinate. 
It should be noted that the deformation of the string brings aoout stabilization of 
energy associated with the string. This stabilization is in contrast to the destabilization 
which is brought abou,t at the TS along the IRC, as shown in fig. 8. The TS is shifted 
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-Q ~ I ~- +Q 

Fig. 7. The stable equilibrium point 
is stabilized by the external forces. 

Reac tan t  Cell  P roduc t  Cell  

Fig. 8. The unstable equilibrium point, the 
TS, is destabilized by the external forces. 

along the IRC. Accordingly, the cell structure is expanded or compressed, and the 
associated energy should be positive; destabilization of energy is observed, as 
shown in fig. 8. This is in marked contrast to the stabilization in the direction 
orthogonal to the string. 

In general, the reaction rate should be obtained by the convolution of these 
mutually independent dynamics, which may be performed in a statistical manner. 
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3. Per turba t ion  theory of strings 

3.1. POTENTIAL ENERGY SURFACE 

The adiabatic potential energy U A for a reaction system composed of N nuclei 
is obtained as a function over 3N-dimensional configuration space with space-fixed 
3N Cartesian coordinates. The IRC equation is then represented as follows: 

d x i / d s  = ( a U A / O X i ) / ( d U A / d S ) ;  i =  1,2 . . . . .  3N, (lO) 

where x i and s denote "mass-weighted" Cartesian coordinates and the IRC, respectively. 
On the IRC, the configuration of the reaction system is represented as 

IRC x}RC(s); i 1,2, ,3N. 
X i = . =  . . .  (11) 

Without the reaction medium M, the potential energy surface U a along the reaction 
coordinate s can be approximated using the normal coordinate Qi orthogonal to the 
IRC as follows: 

UA (s) = U (°)(s) + higher order terms, (12a) 

. (o) ( s )  + U(°)(s) = '~mc 
3N-7 

gi(°)(s), (12b) 
i=1 

Ui(°)(s) = ( 1 /2)a}° ) ( s )Qi  (S) 2, (12c) 

where U(~°~c, U! °) and a} °) denote the adiabatic potential energy along the IRC, the 
potential energy in the direction of the ith normal coordinate, and the force constant 
for U! °), respectively. In the neighborhood of the IRC along the IRC, the configuration 
of the reaction system is then represented as 

x i = x i (s ,  Qi(s));  i = 1 ,2  . . . . .  3N. (13) 

The IRC is then the center line, defined as 

x] ac = xi(s,  0); i = 1, 2 . . . . .  3N. (14) 

The effect of the reaction medium upon the reaction system proceeding along 
the reaction path is now considered. If the medium gives only a weak intermolecular 
force not involving the formation of a chemical bond, the addition of the medium 
may be treated as a small perturbation. The reaction medium does not break the 
reaction system itself, but intervenes in the reaction system as an external force 
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field. When the reaction medium interacts with the reaction system, a perturbation 
energy UAM appears. The UAM may be approximated as follows: 

3N-7 
UAM(S) (1) =UiRc(S)+ @l)(s), 

i=1 
(15a) 

u/")(s) = (s) Qi (s), 05b)  

where U(~c, U[ 1) and F i denote the static energy change brought about by association 
of the medium, the perturbation due to the external force field, and the strength of 
the force of the medium affecting the ith normal coordinate, respectively. In the 
nonadiabatic regime, the medium is fixed in the course of the chemical reaction. 
Hence, the additional perturbation potential U M is zero by definition. 

For the sake of convenience, we have neglected the higher-order perturbation 
terms and UM. The energy for the perturbed system then becomes: 

3N-7 
U = UA + UAM = Umc(S)+ ~ Ui(s )+  higher order terms, 

i=1 
(16a) 

r l (  1 ) u Rc(s) = + (16b) 

Ui(s)  = Ui(°)(s) + Ui(1)(s). (16c) 

Using eqs. (12c) and (15b), the potential energy for the ith mode may be 
represented as 

Ui (s) = ( 1/2)a}°)(s) Q,. (s) z - Fi (s) Q,- (s) 

= (1/2)a!°)(s)(Qi(s) - AQi(s))  2 + AUi(s ) .  (17) 

The effect of the external field upon Ui(s) emerges as a deviation, 

AQ/(s) = Fi(s)/a}°)(s),  (18) 

of the reaction path in the direction of Qi(s). This demonstrates the min-max relationship 
that the smaller the magnitude of the force constant of the normal mode orthogonal 
to the string, the larger the deformation of the string in the direction of the normal 
mode. Moreover, we obtain the energy difference, 

A U i (S) = - / ~  (S) 2 /2a}° ) ( s ) ,  (19) 
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of the reaction path. For stable vibrational modes, the a!°)(s) are all positive, and 
a stabilization of energy is obtained: AUi(s) < 0. On the other hand, for unstable 
vibrational modes including the mode of the IRC, a destablization of energy is 
obtained: AUi(s) > O. 

It should be noted that the "translation-rotation-vibration" perturbation and 
the deformation of the string should be defined in the IRC frame in order to 
uniquely define the "attitude" or "configuration" of the string with respect to the 
reaction medium. It should also be noted that if, as shown in fig. 6, the external 
interaction is strong, then the deformation of the string should moreover be represented 
as the rotation and mixing of the normal modes Qi(s) orthogonal to the IRC. 
Furthermore, the originally "free" translational and rotational motions of the string 
in terms of the IRC frame may turn out to be fixed, in the sense that the string is 
"caught" in the reaction medium, whereby the originally free translational and 
rotational motions of the reaction system A may reduce to the local "vibrational 
motion" of the string with respect to the reaction medium M. The latter effect should 
also contribute to the reaction rate formula. 

3.2. RATE CONSTANT 

In this subsection, the reaction rate constants are discussed within the RRKM 
theory [2, 13]. The standard expression for the unimolecular rate constant of-an 
isolated molecule with total energy E is 

k(E) = N(E)/2~rfiN;(E), (20) 

where N(E) and No(E ) are the integral density of states for the transition state and 
for the reactant molecule, respectively: 

No(E) = ~ . h ( E -  e . ) ,  (21a) 
12 

N(E) = ~ , h ( E -  V o - e~), (21b) 
n 

where h(x) is a step function, and e,, and e~ are the vibrational energy levels of R 
and TS, respectively, and where V0 is the activation energy. Within the separable 
approximation of the vibrational states, the tunneling effect is accounted for by 
replacing N(E) in eq. (22) by NQM(E ) as [14, 15] 

NQM (E) = ~ . P ( E -  V 0 - e~). (21c) 
?1 

If the reaction system is perturbed by the reaction medium, the vibrational energies 
in eq. (21) are expressed using the perturbation theory: 
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e,, = e~°)+ e~ (I) + e~ 2) + . . . .  (22a) 

e,, * = e~(°)+ e~(1)+ e~(Z)+ ... (22b) 

For the unperturbed system, we have 

eJ ° )= ~ tiw}°)(ni + (1/2)), (23a) 
i=1 

f - 1  

eft (°) = ~ ~w~(°)(ni + (112)), (23b) 
i=1 

where f is the number of vibrational degrees of freedom of the stable molecule, 
f = 3N - 6, w[ °) and wi ~°) are the normal mode frequencies of the R and the TS, 
respectively. The standard expressions for N~ °) and N (°) are given as 

f 
N(o°)(E) = E f  [ f  ! l-I (fiw!°)), 

i=1 
(24a) 

f - 1  

N(°)(E) = ( E -  Vo(°)) f -  1 / ( f _  1)! I ~  (~w/~(°))" 
i=1 

(24b) 

The next step is to include the higher-order perturbations. The second-order 
perturbation represents the change of force constant. Moreover, it has an effect on 
the gradient direction used in defining the force constant projector. Therefore, the 
second-order perturbation is very important. 

4. Application 

We have reported a preliminary study of the string model for the rate constant 
of nonadiabatic solvation in the hydration reaction of carbon dioxide [2]. An external 
point charge, proton, has been used to express a model of the enzymic catalysis of 
the hydration of CO2. This reaction is of vital interest in biological processes [16]. 

The reaction system now considered is shown in fig. 9. From left to right, 
R, TS, and P mean the configurations of the reactant, the transition state, and the 
product, respectively. These configurations are all coplanar except for one 
hydrogen atom H6 at the TS configuration. The activation energy is 48.98 kcal/mol 
(HF/3-21G), and the reaction is exothermic by 3.65 kcal/mol (HF/3-21G) [2]. 

As an application of the present treatment, an external water molecule is now 
situated as shown in fig. 10. Here, we consider two schemes of interaction, M1 and 
M2, of the external water molecule. Throughout the reaction, we fix the coplanarity 
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O H O H O H \ \ .-" \ / 

c . . . . . .  o '  , > c . . . .  0 , :> c o 
/ \H  I I / 

0 0 - - -  H Ox H 

R TS P 

Fig. 9. Reaction pathway for the hydration of CO 2 in vacuum. 
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Fig. 10. Scheme of interaction of the external water 
molecule. (a) Scheme MI, and (b) scheme M2. 

of the O7-H8 bond with respect to the reaction system except for the TS configuration, 
and the dihedral angle O9784 = 120 °. For both schemes M1 and M2, the external 
molecule is weakly interacting with the system A. First, for the adduct of CO 2 and 
H20 in the R configuration, a pair of weak hydrogen bonds are observed. Here, we 
set the O7-H8 bond to be parallel to the C1-O4 bond, where the 0 4 - 0 7  direction 
is perpendicular to the C1-04  bond with the 0 4 - 0 7  distance being 3 A. Next, in 
the TS configuration, hydrogen migration occurs in a mutually different manner for 
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the schemes M1 and M2. In scheme M1, the hydrogen migration occurs in the front 
of the external water molecule. Then the hydrogen bonds are broken, which event 
occurs also for the P configuration. Throughout in scheme M1, the external water 
is situated in the same manner as in the R configuration. 

In scheme M2, on the other hand, hydrogen migration occurs in the back of 
the external water molecule. For the TS configuration as well as for the P configuration, 
here we maintain the situation in such a way that the coplanarity of the O7-H8 bond 
is fixed with respect to the O 4 - H 6 - O 2  plane and the angle ~678 is fixed to be the 
same as for the R configuration. 

t,,O 

10 

< 

Z 
o 0 ¢_) 

< 

-5  

~." j j J J  

. "  A / 

/ 
/ 

/ 
/ 

50 55 60 65 70  75 80 
g 

(KCAL/MOL) 

Fig. 11. Reaction rates. 

Using the method presented in section 3.1, the perturbation energies to the 
string are calculated. As a result, the activation energy increases in scheme M1 by 
4.63 kcal/mol, while it decreases in scheme M2 by 1.35 kcal/mol. Next, the reaction 
rate is calculated using the method presented in section 3.2 and the result is shown 
in fig. 11 [2]. A distinct acceleration effect is demonstrated in scheme M2, in 
contrast to deceleration in scheme M1. 
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